Researchers uncover clues to understanding death of massive stars
PTI, Jan 13, 2021, 9:50 AM IST
Credit: iStock Photo
New Delhi: Researchers at Indian Institute of Technology (IIT), Guwahati, claim to have found important clues to understand the death of massive stars and have also revealed the problems with the existing models.
The research in collaboration with Max Planck Institute for Physics, Munich, Germany, and Northwestern University, USA, has also been published in international journal Physical Review Letters (PRL).
“Supernovae — the super explosions at the time of death of large massive stars — are considered to be the cradle of birth for new stars and synthesis of the heavy elements in nature. At the end of their life, the stars, especially massive ones, collapse resulting in an immense shock wave that causes the star to explode, briefly outshining any other star in its host galaxy.
“The study of supernovae and the particles they release helps us understand the universe because almost all matter that makes up the universe is a result of these massive explosions. However, the mechanism of these super explosions is not yet completely solved and has remained one of the enigmas of nature,” said Sovan Chakraborty, Assistant Professor, Department of Physics, IIT Guwahati.
According to the team, the solutions to the toughest challenges to the core collapse mechanism of the huge supernovae come from the tiniest subatomic particles called neutrinos.
“During the core collapse supernova explosion, neutrinos are created in several particle processes. Due to their neutral nature and extremely weak interaction with stellar matter the neutrinos escape the dying star and carry 99% energy of the collapsing star. Thus the tiny neutrinos are the only messenger bringing information from the deepest interiors of the star. Neutrinos on the other hand have their own complexities,” he said.
“This information is very crucial for the reason that in the extremely dense supernovae core neutrinos interact with other neutrinos and may interchange flavors. This conversion may happen rapidly (in nanosecond time scale) and flavor interchange can affect the supernovae process as the different flavors are emitted with different angular distribution.
“These ’fast’ conversions are nonlinear in nature and are not confronted in any other neutrino sources but supernovae. We for the first time did a non-linear simulation of fast conversion with ‘all’ the three neutrino flavors in supernovae,” Chakraborty added.
Udayavani is now on Telegram. Click here to join our channel and stay updated with the latest news.
Top News
Related Articles More
AI tools like GPT-4 do not fare well in ‘conversing’ with patients, study finds
Andhra Pradesh-based start-up tests ultra-high-frequency communication tech on ISRO’s POEM-4
New Year’s greetings with an artificial but intelligent twist
Space docking experiment: Spacecraft injected into right orbit, ISRO eyes another tech feat
GSLV mission planned in January would be 100th launch from Sriharikota: ISRO chief
MUST WATCH
Latest Additions
Over 400 flights delayed at Delhi airport due to bad weather
No link between Sanatana Dharma and Chaturvarnya caste system, says Sivagiri Mutt head
RSS’ lathi-training instills bravery, not meant for public display or fighting: Bhagwat
UPSC seeks details from 2 visually-impaired candidates,who took 2008 civil services, for appointment
BJP destroying future of youths in country: Rahul
Thanks for visiting Udayavani
You seem to have an Ad Blocker on.
To continue reading, please turn it off or whitelist Udayavani.