Artificial “proteins” programmed to control activities of genes developed
PTI, Apr 5, 2020, 1:24 PM IST
Washington: Researchers have created artificial proteins that can control the activity of genes and other molecules in living cells in predetermined ways, an advance that can be used to program the behavior of more complex chemical and biological systems.
In the study, published in the journal Science, the scientists showed that the designer proteins can regulate the activity of genes inside the human immune system’s T-cells, adding that the development may improve the safety and durability of future cell-based therapies.
The researchers, including those from the University of Washington in the US, explained that the proteins, like their electronic counterparts, logic gates, implement a Boolean function, which is a logical operation performed on one or more binary inputs that produces a single binary output.
They explained that these logic gates sense and respond to signals in predetermined ways.
Citing an example, the scientists said, the ‘AND’ gate produces output only when one input AND another are present. When typing on a keyboard, pressing the Shift key AND the A key produces an uppercase letter A, they explained.
The novel protein logic gates, made from biological parts, aim to bring this level of control into bioengineered systems, the researchers added.
“Bioengineers have made logic gates out of DNA, RNA and modified natural proteins before, but these are far from ideal. Our logic gates built from de novo designed proteins are more modular and versatile, and can be used in a wide range of biomedical applications” said study senior author David Baker from the University of Washington.
Using proteins like the one currently developed, the scientists said, inputs such as the presence of two different molecules in a living cell can cause it to produce a specific output, such as activating or suppressing a gene.
“The whole Apollo 11 Guidance Computer was built from electronic NOR gates,” said lead author Zibo Chen, a recent UW graduate student.
“We succeeded in making protein-based NOR gates. They are not as complicated as NASA’s guidance computers, but nevertheless are a key step toward programming complex biological circuits from scratch,” Chen added.
While recruiting a patient’s own immune cells in the fight against cancer has worked for certain forms of the disease, targeting solid tumours with genetically engineered T-cells has proven challenging.
Based on earlier studies, the researchers believe this could in-part be due to T cell exhaustion.
Genetically altered T cells can fight for only so long before they stop working, they explained.
But with protein logic gates that respond to exhaustion signals, the scientists hope to prolong the activity of genetically modified T cells.
“Longer-lived T cells that are better programmed for each patient would mean more effective personalized medicine,” Chen said.
Udayavani is now on Telegram. Click here to join our channel and stay updated with the latest news.
Top News
Related Articles More
As Delhi chokes with dangerous pollution levels, doctors warn of health risks for all
World Diabetes Day 2024: Kasturba Hospital Manipal Hosts Zumba Session at Malpe Beach to Raise Diabetes Awareness
World Diabetes Day: An overview of types of diabetes
World Diabetes Day: One-fourth of people living with diabetes in 2022 are in India, Lancet study estimates
Disruption in liver-brain communication behind overeating, Study claims
MUST WATCH
Latest Additions
Northern Army commander reviews security situation in J-K’s Kishtwar
Delhi BJP protests against AAP govt, distributes masks amid pollution crisis
Shastri confident ‘world class’ Jaiswal will return from Australia as a better batter
Bengaluru police to challenge bail granted to actor Darshan in SC
Bengaluru police to challenge bail granted to actor Darshan in SC
Thanks for visiting Udayavani
You seem to have an Ad Blocker on.
To continue reading, please turn it off or whitelist Udayavani.